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Path integral solution of a class of potentials related to the 
Poschl-Teller potential 

Christian Grosche .f 
1l.Institut fur Theoretische Physik, Universitat Hamburg. Luruper Chaussee 149. 2000 
Hamburg 50, Federal Republic of Germany 

Received 3 May 1989 

Abstract. In  this paper some new exact path integral treatments are presented. These are 
the path integrals for the symmetric top, the ‘smooth step’, the Rosen-Morse- and the 
Manning-Rosen-potential. By appropriate spacetime transformations these path integral 
problems can be reduced to the path integral problem of the Poschl-Teller potential. 

1. Introduction 

In the last ten years there has been remarkable progress in calculating path integrals 
explicitly. The initiative was given by Duru and Kleinert [ l ]  with their treatment of the 
hydrogen atom. The clue for solving this path integral problem successfully was to find 
simultaneously a coordinate- and time-transformation (‘spacetime transformation’) to 
rei‘ormulate the hydrogen problem in terms of the harmonic oscillator which was a well 
known and already solved problem. This idea of attacking path integral problems by 
performing spacetime transformations has since been marvellously fruitful and much 
of the following work is based on that idea. 

Here we want to add some further examples. As we shall see, we must perform in 
three out of four cases a spacetime transformation and we need in all the examples the 
results of the path integrals of the (modified) Poschl-Teller potential. Let us summarise 
in short the results of these two path integrals and the results of the technique of 
spacetime transformations in path integrals. 

( i )  The Poschl-Teller (PT) potential with some numbers ti and i. is defined as 

0 < x < n/2 .  
cos2 x 

This class of potentials was first discussed by Poschl and Teller [ 2 ] .  A detailed 
discussion can be found, for example, in Constantinescu and Magyari [3] and Barut 
et al [4]. The path integral solution for this potential can be achieved by means of 
the path integral over the SU(2) manifold, and it was successfully studied by Duru [5], 
Inomata and Kayed [6] and Bohm and Junker [7]. Alternatively, a simple form can be 
studied with the help of the rigid rotator [8, 91. 

t Present address: The Blackett Laboratory, Imperial College of Science, Technology and Medicine, 
Prince Consort Road, London SW7, UK. 
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Some care is needed in the path integral formulation for the Poschl-Teller potential. 
Looking carefully at the lattice derivation [7 .  51 for the path integral we see that we 
must use a functional measure formulation similar to the one used in the lattice 
formulation for the radial harmonic oscillator [8, 10, 1 I ] .  This has the consequence 
that the following interpretation scheme must be used, namely (we use units f i  = 1 ) :  

m , ti(ti - 1 )  
2 2msin’x 2mcos2.x 

i.0. - 1)  >dt] KPT(x”, x‘; T )  = --*- - - 

( L‘’’ i2 dr) 
:= 1 Dx(t)p,,,,[sin x, cos x3 exp 

= .\-+S. lim (A) 2711.5 n dx‘.” 
N ‘2.2’-I  *, 2 

] = I  

h 

where the functional measure pL;,, is given by (we use the notation sin2Wj = 
sin sin @--‘I etc) : 

The first line in (2) has only the symbolic meaning that formally the potential appearing 
in the Schrodinger equation translates into Dx exp(i x Action). We want to emphasise 
that only the functional measure formulation has a well defined lattice formulation. The 
usual expansion of the modified Bessel function I , , ( z )  2: (27r~)- ’ /~  exp[z-(v2- 1/4)/2z)] 
( z  -+ x, arg(z) # 0) (or equation(3.15) in [12], respectively) seems very suggestive but 
gives in the lattice formulation the wrong boundary behaviour of the corresponding 
short-time kernels and wavefunctions because the condition arg(z) # 0 is violated. 
Instead of the correct behaviour we would get a highly singular one. But it is not the 
scope of this paper to discuss these features in detail; this will be done elsewhere [13]. 

The path integral solution for the Poschl-Teller potential now reads: 
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Here the P,l””l(z) denote Jacobi polynomials. 

defined as 
(ii) The modified Poschl-Teller (MPT) potential with some numbers q and v is 

Classical studies of this problem have been presented by Frank and Wolf [I41 and 
Barut et al [15], whereas the path integral treatment by means of the path integral over 
the SU(1,l) manifold is due to Bohm and Junker [16, 71. The special case Y ( V  - 1) = 0 
can be studied with the help of the path integral on the pseudosphere [17]. Again 
we must use a functional measure formulation similarly to the previous one and the 
following interpretation scheme for the modified Poschl-Teller potential must be used : 

2 2msinh’r 2mcosh‘r 
-p-  m 3  - v ( q - U +  KMPT(r”,r’;  T )  = 

:= s Dr(t)pq,, [sinh r, cosh r] exp ( g  Lr’’ ?dt )  

where the functional measure p q , y  is given by 

\ 

pq, ,  [sinh r, cosh r] = lim n p ,,,, [sinh rIJ’, cosh rD’] 
1 +% 

j=l  

h h 

x exp(-F(sinh‘ru) - cosh2r(Jl) 

h 

x (:cosh’ ru)) 

Of course, the same line of reasoning as before is also valid for KMPT as far as 
the functional measure is concerned. Adopting the notation of Frank and Wolf the 
path integral solution reads (define 2s = q ( q  - l ) ,  -2c = v ( v  - 1) and introduce the 
numbers k l , k 2  which are defined in terms of c and s as k ,  = i[l ( a  - 2 ~ ) ’ / ~ ] ,  
k ,  = ; [ I  f ( f  + 2 ~ ) l ’ ~ ] ) :  

n=O 
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Here N ,  denotes the maximal number of states with 0,1 , .  . . , n I N ,  i k ,  - k , -  i .  The 
correct signs depend on the boundary conditions for r --+ 0 and r --+ sc, respectively. 
In particular one gets for s = 0 an even and an odd wavefunction corresponding to 
k - - _ -  i, i. The bound states are explicitly given by: 

YL~I.~?) ( r )  = ~,l,ki..”” (sinh r ) 2 k ? - l  / 2  (cosh r ) - 2 k ~  + 3 / 2  

x ,F , ( -k ,  + k , + t i , - k ,  + k , - t i +  1;2k,;-sinh2r) 

(2ti  - I ) T ( k ,  + k, - t i ) r ( k l  + k ,  + ti - 1) I ”  

) ~ L k 1 . k ~ )  - 
W k , )  7 T(kl  - k, + t i)T(kl - k, - ti + 1) 

and E ,  = - (1 /2m) (2 t i  - 1)2 = - ( 1 / 2 m ) [ 2 ( k l  - k, - n )  - 13’. The continuous states are 

x T ( - k ,  + k, + t i ) r ( k l  + k, + ti - l ) T ( - k ,  + k ,  - ti + 1)]”’* 

where ti = i ( l  + i k )  ( k  > 0) and E = k 2 / 2 m .  

works as follows. One starts with the path integral 
(iii) Let us now discuss the general method for a spacetime transformation [8]. It 

K(x”,x’; T )  = 1 Dx(t)exp [i Lf“( tx2 - V(x) - Vq,(x) ) dt ] ( 1 2 )  

(Vqu = (1/8m)(T2 + 2 r ’ )  is a quantum potential due to a non-trivial metric, see below), 
where it is assumed that the effective potential V + Vqu is so complicated that a direct 
evaluation is not possible. One then defines a new ‘time’ s together with a coordinate 
transformation x ( t )  -+ q(s) ,  s ( t )  = l:,(da/f[x(a)]) and x = F ( q )  with some well defined 
positive functions f and F ,  where we further assume that the relation f ( F ( q ) )  = [F’(4)I2 
holds. Let us consider the Legendre-transformed general one-dimensional Hamiltonian 

dx 

which is Hermitian with respect to the inner product Cfl , f , )  = f;(x)f2(x)J(x)dx), 
where J ( x )  = exp({ r(x)dx).  Let us define the quantities G(q)  = T ( F ( 4 ) ) ,  ,& = J ( 4 )  = 

exp(j4 h ’ ) d q ’ ) ,  r ( 4 )  = G ( q ) F ’ ( q )  - F ” ( q ) / F ’ ( q )  and 

1 d I -  
P ,  = T ( d q  + p )  
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where p ,  is, of course, a momentum operator which is Hermitian with respect to the 
scalar product ( f , , f z )  = I  f ; ( q ) f z ( q ) m d q .  With the constraint f ( F ( q ) )  = F’*(q)  we 
thus obtain the spacetime-transformed Hamiltonian H = f H E  : 

with the well defined quantum correction 

Now assume that the constraint l i ’ds f [F(q(s ) ) ]  = T ( s ( t ” )  = S I ’ )  has for all admissible 
paths a unique solution SI’ 2 0. Of course, since T is fixed, the ‘time’ SI’ will be 
path dependent. We must incorporate the constraint into the path integral and define 
the energy-dependent Feynman kernel G(x”, x’; E )  (Green function) via the Fourier 
transformation 

and obtain the transformation ,formula 

G(x”, x’; E )  = ilf(x”)f ( x ’ ) ] ’ ’ ~  K(q”, 4’; s”) ds” LX 
which gives the energy-dependent kernel G as a time integral over the transformed 
Feynman path integral R(q”, q,  s”) = (q”le-’.”’R1qr) : 

S’’ 

R(q”,q’;s”) = 1 Dq(s)exp [i 1 (Tq2 - f ( F ( q ) ) [ V ( F ( q ) )  -E]  - pqu(q))ds] (18) 
0 

where q = dq(s)/ds,q’ = F-I (x ’ )  and q” = F - ’ ( x ” ) .  Here the measure Dq(s) is defined 
in the same way as Dx(t) in the path integral (12). This technique of spacetime 
transformation was orginally developed by Duru and Kleinert [l]. It was further 
developed by Steiner [18], Pak and Sokmen [19], Inomata [20], Kleinert [21] and 
Grosche and Steiner [8]. The lattice derivation of the equations (16)-(18) is far from 
beeing trivial but can be rigorously performed (e.g. by appropriate symmetrisation 
rules and the well known midpoint prescription (which must be used in path integrals 
on curved manifolds)). 

The further content of this paper reads as follows. In 92 the path integral solution 
for the symmetric top is presented, a problem closely related to the SU(2) path integral. 
In $3 the path integral solution for the ‘smooth step’ function V ( x )  = -Vo/(l + ex/R) 
( x  E IR, Vo, R > 0, constants) is calculated, a potential important in solid state 
physics. Section 4 contains finally the path integrals for the Rosen-Morse potential 
V ( x )  = A tanh(x/R) - B /  cosh*(x/R) (x E IR) and for the Manning-Rosen potential 
V ( r )  = Acoth(r/R) - B /  sinh2(r/R) ( r  > 0, A , B ,  R > 0 denote constants). Section 5 
contains some summarising remarks. 
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2. The symmetric top 

A quantum mechanical treatment of the symmetric top (ST) is due to Dennison [22]. 
He used i t  for describing the spectra of molecules with rotational degrees of freedom. 
There is also a close relationship to the problem of an electron moving in the field 
of a magnetic monopole [23]. The simplest top is, of course, where all three principle 
moments of inertia are equal. This, in fact, is the SU(2) problem [ 5 ] .  Here we want 
to discuss the symmetric top, where only two principle moments of inertia are equal. 
We introduce the Eulerian angles e,y),Cp with 8 E [0,7c], y E [0,27c] and Cp E [0,27c]. 
The kinetic energy giving the rotational energy (= classical Hamiltonian = classical 
Lagrangian) of a rigid body with the two principle moments of inertia A and B in 
these coordinates is then given by (e.g. [24] j : 

where 4'' (a = 1,2,3) denote the three Eulerian angles and the metric tensor go, and its 
inverse gah are given by (B = B / A ) :  

0 

B 
sin' 6 + B cos' 6 B cos e 

B cos e 
(20) 

0 
I /  sin'e -cos e/ sin'e 

o -cose/sin'O 1 / B + c o t 2 8  

and the determinant g of g,, is g = det(g,,) = B sin' 8. The Hamiltonian is 

sin 

To construct Hamiltonians in quantum mechanics we must respect the ordering am- 
biguity of position and momentum operators. Following our prescriptions given in 
[25, 81, we start by considering the Hermitian momenta 

with ry = Zq In Jg.  Thus 

For the Hamiltonian we can use the well known Weyl-ordering prescription 
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with the well defined quantum potential 

or, respectively, the ‘product-ordering’ prescription [25] 

with the decomposition g“’ = h““h“’ . Due to the special nature of gUb and gab, 
respectively, the quantum potentials turn out to be equal for both prescriptions and 
we find for the quantum Hamiltonian of the symmetric top: 

The path integral for the symmetric top can now be constructed in the usual way [25, 81, 
and in the ‘product-form’ definition (Aqi / l  = q’JJ - qu- l l ,  q’J! = q(t‘J1) = q(t’ + j e )  (j = 
0, 1,. . . . N ) ,  E = T / N  = (t” - r ’ ) /N ( N  -+ x)) it is 

K s T ( O ” . O f . ~ ” , y ~ ’ , ~ ’ ’ , ~ ’ ~  T )  = &DO(t)Dy( t )D&t)  J’ 

We calculate this path integral by starting with a Fourier expansion 

L = - x  .M=-r 
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The condition of single-valuedness determines that L and M shall have integral values 
either postive or negative and including zero [22 ] .  We now obtain 

where the kernel I?:;, is given by 

In the 4- and tp-integrations, respectively, the range of integration has been extended 
in the limit N + x. from [0 ,2n]  to the entire IR, which is standard in path integration 
technique (e.g. [26 ] ) .  This potential problem related to the symmetric top has also its 
own right as a path integral, especially if one analytically continues in L and M to, say, 
arbitrary real numbers. The path integral (30) can now be solved by a simple coordinate 
transformation by means of the Poschl-Teller potential or S U ( 2 )  path integral (see also 
[5] for a similar calculation), respectively. 

We consider the Hamiltonian 

1 d2 (M - L cos6)’- a H = - - - +  
2 A  de? 2 A  sin‘ 0 

then perform the transformation ( 1  - cos 0 )  = 2 sin‘ x, i.e. x = 0 / 2 ,  and arrive at the 
transformed Hamiltonian 

1 d’ (M - L ) ? -  a ( M + L ) ?  - ~2 
4 _ _  

8A d.$ 8~ sin’ .Y 8Acos2x 2 A ‘  
H = + + 
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Thus we get the transformed path integral corresponding to the Hamiltonian A :  

I?:L(6".8': T )  i exp(iTL'/2A)~(s' ' , . \- ' ;  T )  

= exp(iTL2/2A) D s ( t ) p  , , I-L [sin s. cos x] exp( 2iA ir" i2 dr) s 
Here we used the notation of (4). where 171 = 4A. ti = d + 4, i. = s + 
and s = IM + Ll. Thus we get finally the path integral for-the symmetric top: 

KsT(6". 6'. y". V I .  @It, 4 ' :  T )  

with d = IM - L /  

= f 2 2 exp(-iTEiT)Y:T*(8', y'. q5')Yy"T(f3'', tp", 4") 
, I 4  .\I=--/. L = - z  

(34) 

where the wavefunctions and the energy spectrum are given by 

[n + ( d +  s + 1)/2)]? - f E: = + -  L2 
2A 

We can introduce the quantity J = n+(d+s ) /2  = 0,1,2.. . . and can interpret the energy 
as 

E =--- 
2A 

For A = B we recover the SU(2)- and S0(3)-spectrum. respectively. Note that 

( 3 7 )  

This suggests that J .  L and M may be interpreted as representing angular momentum 
and i t  can be in fact shown that, e.g., the total angular momentum P can be described 
by P' = J ( J  + I ) .  For a detailed discussion of these features see [22]. 

As a final result we consider the kernel I?:;, interpret the numbers 1; and M as, 
say. arbitrary real numbers and obtain the path integral identity: 

J D O ( i ) e x p [ i J r " ( i 6 2 -  ___ (M - L cos O ) ?  - f 
2A sin' 6 

in the notation of (41, ( 5 )  and (34). In (39) a functional measure formulation must be 
used if needed. 
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3. The smooth step 

Let us consider now the path integral for the ‘smooth step’ potential (x E lR) V ( x )  = 
--vO/(l 

Potentials like this are important in solid state physics. They can smear out the potential 
step at metal-vacuum interfaces. Following our prescription for a general spacetime 
transformation in path integrals we start by considering the Legendre-transformed 
Hamiltonian H ,  : 

We perform the transformation (1  + eyiR)-l = tanh‘ r, introduce the momentum oper- 
ator p, = (l/i)[(d/dr) + ;rr] (r, = l/(sinhr coshr)) and define a new ‘time’ s by dt = 
f [q(s)]ds, with f ( r )  = 4R’coth’ r. Thus we have AV = -(1/8m)(3/ cosh’r + 1/ sinh’r) 
and arrive at the spacetime-transformed Hamiltonian fi = f ( r ) H ,  : 

3 - 2 8mR2E + a R = - -  p r  - 4R2(E + VO) - 
2m 2m sinh’ r 8m cosh’ r 

Therefore the spacetime-transformed path integral is ( v  = -;, i ;  q = ; & d-): 

k(r”, r ’ ;  s”) = exp[is”4R2(E + V,)] s Dr(s)pq,v [sinh r, cosh r] exp (F k”’ i’ds). (43) 

This path integral is a special case of the modified Poschl-Teller potential as discussed 
in the introduction. Equations (9) and (11) give immediately the solution yielding 
(there are no bound states) 

Due to the boundary conditions Yrl’k2’ + 0 for r + 0 we get k, = 0 and k, = 
i ( l  + M). Performing the s” integration gives therefore 

The energy spectrum is E ,  = (k‘/8mR2) - Vo and has a constant shift Vo. 
wavefunctions are given by ( y  = ( 1  + e‘’R)-l, p 

The 
d m ,  k J2mR2(E + Vo)):  

YStep(x) = N.P”l - y)’‘JI [i(p + k), i(p + k) + 1 ; 1 + 2ip; y] 

N = ( -  k sinh 7rk sinh 27~p 
8p7cR sinh rr(p + k) sinh ~ ( p  - k) (46) 

This is the correct result [3]. 
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4. The Rosen-Morse and Manning-Rosen potential 

4.1. The Rosen-Morse potential 

Let us first consider the path integral for the Rosen-Morse (RM) potential VRM(x) = 
A tanh(x/R) - B /  cosh*(x/R), (x E IR, A .  B ,  R positive constants): 

)dt] . (47) 
cosh’(x/ R) 

K R M  (x”,x, ; T) = s D.w(t) exp [ i l‘”( T1‘ - A tanh(x/R) + 

The potential V R M  was introduced by Rosen and Morse [27] to discuss the spectra 
of polyatomic molecules. With this potential one can also study the penetration 
of electrons through a potential barrier [28]. Further contributions with explicit 
determination of the normalised wavefunctions are due to Nieto [29] and, by the 
factorisation method, by Barut, Inomata and Wilson [15]. The Rosen-Morse potential 
has a discrete and continuous spectrum and thus a ‘hidden’ SU(1,I) symmetry. There 
is already a path integral solution for V R M  by Junker and Tnomata [12], but their 
treatment is based on the SU(2) path integral instead of the SU(1,l) path integral. 
Therefore these authors did not obtain the continuous part of the spectrum. 

We proceed similarly to the previous section. Let us start with the Legendre 
transformed Hamiltonian H E  : 

- E .  
1 d‘ x B H E = - - - + A t a n h - -  

2m dx2 R cosh‘(x/R) 

We perform the transformation 4(1  + tanh(x/R)) = tanh2 r ,  introduce the momentum 
operator p, = ( l / i ) ( (d /dr )+i r , )  with r, = l/(sinh r cosh r ) .  We define a ‘time’s together 
with the coordinate transformation x ( t )  -+ r ( s )  with F ( r )  = R tanh-’(2tanh2r - I), 
f ( r )  = R2 coth’r and A V  = -(1/8m)(3/ cosh‘ r +  1 /  sinh’ r ) .  Thus we get the spacetime- 
transformed Hamiltonian I? = f ( r ) H E  : 

- p2 2 m R 2 ( A + E ) + i  8mBR2+: 
H = L -  - + R’(A - E )  

2m 2m sinh’ r 2m cosh’ r 
(49) 

and the spacetime-transformed path integral l? is ( q  = 

2 -  + d1 +8mBR2):  
k J-2mR2(A + E ) ,  v = 

l? (r” ,  r’;s”)  = exp[is”R2(A - E)] Dr(s)p,/,, [sinh r,cosh r] exp (F L”’ i’ds) s 
‘3 $1 

= x e x p [ i s ” [ ( E  - A)R’ - ~ , ~ ] } Y ~ ~ ~ A ~ ’ * ( r ’ ) Y ~ ~ ~ ~ ~ ~ ) ( r ’ ’ )  
n=O 

V‘)  (50) + Lz dk exp{is”[(E - A)R2  - (k’/2m)]}Yf’.”’ * ( r ’ ) y f l  3k2) 

in the notation of (9). Performing the s”-integration (cf equation (1 7)) and respecting 
the correct boundary conditions for x -+ kx. yields 

Y p f * ( X ’ ) y I  ” Y f M  *(X’)“X’’) 
.1: +.f 

(’ +- Lx d k A  + (k2/2mRZ) - E ’  
G(x”, x’; E )  = 

E , R M  - E 
n=O 
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The wavefunctions and the energy spectrum are given by (s m, 0,1,. . . , n I 
N,w < t ( s - l ) - d W , k ,  = ; ( 1 + s ) , k z =  ~ 1 + ~ ( ~ - 2 n - 1 ) - [ 2 m A R ~ / ( s - 2 n - l ) ] ,  
U = i [ l  + tanh(x/R)], note k2  - 4 > 0, we use a slightly different notation from [15, 
291) : 

s n !  T(s - n)  
r(2k2 - n)T(s - 2k, - n + 1) 

= (R27-?11-1 

The wavefunctions and the energy spectrum of the continuous states are given by 
(k, E i ( 1  + ik), k E d2mR2(A + E k )  > 0): 

- -  

x 2 F , ( $ [ 1 + s + i ( ~ - k ) ] , $ [ 1 - s + i ( & - k ) ] ; 1 + i ~ ; u }  (54) 

and E ,  = A + k2/2mR2. These are the correct results [15, 291. They can further 
be checked by inserting the wavefunctions (52), (54) into the Schrodinger equations 
corresponding to the Hamiltonians H E  and fi (48), (49), respectively. 

4.2.  The Manning-Rosen potential 

Now we shall discuss the Manning-Rosen (MR) potential VMR(x) = B /  sinh2(x/R)- 
A coth(x/R), (.U > 0, A ,  B ,  R positive constants). V M R  was introduced by Manning and 
Rosen [30] to study vibrations of diatomic molecules. It can furthermore be used for 
describing the Kepler problem in a space of constant negative curvature [31]. The path 
integral for the Kepler problem in a space of constant positive curvature was discussed 
by Barut, Inomata and Junker [32]. The path integral for V M R  is 

KMR (x",x'; T )  = 1 Dx(t)exp [i Lf' ( :.t2 + Acoth - x - )dt] . ( 5 5 )  
R sinh2(x/R) 

Again we consider the Legendre-transformed Hamiltonian H E  : 

- E .  
1 d' .Y B 

HE = - Acoth - + 
2m dx? R sinh2(x/R) 

Performing the transformation ;( 1 - coth(.x/R)) = -1/ sinh 

H = L +  - p? 2mR'(E-A)+: + 8 m B R 2 + i  - 
2m 2m cosh' r 2m sinh' r 

r yields: 

E + A I R * .  (57) 
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Here we have introduced the momentum operator p r  = (I/i)[(d/dr) + 4rr] (r, = 
-1 /(sinh r cosh r ) )  together with the time transformation dt  = f ( r )  ds, whLere f ( r )  = 
R’ tanh? r .  With AV = ( 1  / 8m) (  1 /  cosh’ r + 3/ sinh’ r )  we thus arrive at the spacetime- 
transformed path integral (a = f k d1 + 8mBR2. t’ = _+ J-2mR2(E - A ) ) :  

I?(?-”, r ,  : s”) = exp[is”(E + A)R’]  Dr(s)pV,) [sinh r,cosh r] exp( i 1”‘ 5 1 ’  ds) s 

again with the notation of (9). Performing the s”-integration (cf equation ( 1  7)) yields: 

f \I  

n=O E y R  - E  (k2 /2mR2j  - A - E’  
G(s ” ,  x’; E )  = (59)  

Respecting the correct boundary conditions for .Y -+ 0 and x -+ ;c gives k ,  = f [( 1 + i (s+ 

2n+l)+(2mAR2/(s+2n+l))] and k2 = i(t+dl + 8mBR‘) = { ( l + s ) .  The wavefunctions 
and the energy spectrum of the bound states read (0, 1 , .  . . , n I N ,  < V“- i ( s +  l ) ,  
U = i(l -coth(.u/Rj), note n + i - k ,  < 0 ) :  

1 :? 1 (2k ,  - l ) n !  r ( 2 k 1  - n - 1) 
= [ R T ( n + s +  l ) r (2kl  - s - n -  1) 

The wavefunctions and the energy spectrum of the continuous states are given by 
( k ,  2 ( 1  1 + ii), i J2mR2(E ,  - A )  > 0 ) :  

1 +s+i(kc-kj  t +s- i (kc+k)  ; s +  1;-) 1 
2.,( 2 2 1 - U  

and E, = ( k 2 / 2 m R 2 )  - A .  This is the correct result [15], which can be checked by 
inserting the wavefunctions (60j, (62) into the Schrodinger equations corresponding to 
the Hamiltonians H E  and fi (56),  (57), respectively. 
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5. Summary 

In this paper several further examples of exact path integral treatments have been 
presented. These have been the path integral for the ‘smooth step’, the Rosen-Morse, 
the Manning-Rosen potential and the symmetric top. All examples have a close 
relation to the usual Poschl-Teller potential (for a pure discrete spectrum as for the 
top) or to the modified Poschl-Teller potential (if the spectrum is also continuous). 
As already noted, these two path integrals are derived by means of the path integrals 
of free motion over the SU(2) and SU(1,l) manifolds, respectively. This establishes a 
close relationship between free motion on curved manifolds and potential problems. 
But (e.g. [5, 33]), ‘it is well known that all of the special functions which appear as 
solutions of problems in theoretical physics are the matrix elements of some Lie group. 
Because of this fact, if one parameterises the problems suitably with their symmetries, 
it may be possible to relate their path integrals to the ones written for the motions on 
the appropriate group spaces’ [SI. 

We have also discussed the problem of the correct functional measure to be used in 
the path integral of the the Poschl-Teller and modified Poschl-Teller case, respectively. 
The usual expansion of the modified Bessel function seems very suggestive but gives in 
the lattice formulation the wrong boundary behaviour of the corresponding short-time 
kernels and wavefunctions. This is very analogous to the radial path integral which 
has been discussed in great detail in [8, 111. 

The examples solved in this paper suggest that the two Poschl-Teller path integrals 
play an analogous important role for applications as the path integral for the radial 
harmonic oscillator [lo]. In a forthcoming publication we use these three path inte- 
grals (Poschl-Teller, modified Poschl-Teller and radial harmonic oscillator) to give a 
classification scheme (similar to the classical factorisation method of Schrodinger on 
the operator level as reviewed by Infeld and Hull [34]) of the known path integral 
solutions [ 131. 
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